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Motivation

• Advances in Generative Models: Variational Autoencoders (VAE),
Generative Adversarial Networks (GAN), and Diffusion Models.

• Why VAE? Strengths and Relevance

▶ Structured Latent Space: Encourages interpretable and
disentangled representations.

▶ Sample Efficiency: Performs well in low sample size scenarios
(e.g., medical imaging).

▶ Latent Diffusion: VAE-based diffusion models achieves
state-of-the-art results in image generation.

• Theoretical Understanding: Prior work has primarily focused on
generalization bounds, ELBO approximations, and posterior collapse.
However, the Optimization in VAE remains underexplored.
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Introduction: Variational Autoencoders

We consider generative models of the form:

pθ(x) =

∫
pθ(z) pθ(x|z)dz ,

where x is an observation and z a latent variable.

The marginal
log-likelihood is given by:

log pθ(x) = logEpθ(·|x)

[
pθ(x, z)

pθ(z|x)

]
≳ Eqϕ(·|x)

[
log

pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

=: L(θ, ϕ;x) ,

where qϕ(z|x) is the variational distribution.
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Optimization in Variational Autoencoders

Gradient Computation.

▶ For ∇θL(θ, ϕ;x): easy to compute.

▶ For ∇ϕL(θ, ϕ;x): more challenging; two main methods:

• Score function estimator: general, but high variance.

• Pathwise estimator: reparameterization trick, lower variance.

Consider the Stochastic Gradient Descent (SGD) update:

(θk+1, ϕk+1) = (θk, ϕk) + γk+1∇̂θ,ϕL(θk, ϕk;Dk+1) , (1)

• ∇̂θ,ϕL(θk, ϕk;Dk+1) denotes an estimator of the gradient,

• Dk+1 is the mini-batch of data used at iteration k + 1,

• γk > 0 is the learning rate.
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Deep Gaussian VAE: Setting

The Deep Gaussian VAE consists of a decoder and an encoder such that:

pθ(x|z) = N (x;Gθ(z), c
2Idx) ,

qϕ(z|x) = N (z;µϕ(x),Σϕ(x)) .

Figure: Architecture of a VAE using multivariate Gaussian distributions.
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Convergence Analysis for Deep Gaussian VAE

Consider a Neural Network with the assumptions:

(i) For all ϕ ∈ Φ, λmin(Σϕ(x)) ≥ cΣ and all activation functions are
Lipschitz continuous and smooth.

(ii) There exists a constant a such that ∥θ∥∞ + ∥ϕ∥∞ ≤ a for all θ ∈ Θ
and ϕ ∈ Φ.

Convergence Analysis

Let (θn, ϕn) ∈ Θ× Φ be the n-th iterate of Adam, with γn = Cγn
−1/2,

Cγ > 0, and β1 <
√
β2 < 1. For all n ≥ 1, let R ∼ U ({0, . . . , n}). Then,

E
[
∥∇θ,ϕL (θR, ϕR)∥2

]
= O

(
L∗
√
n
+Na2(N−1) d∗log n

(1− β1)
√
n

)
,

where L∗ = L (θ∗, ϕ∗)− L (θ0, ϕ0), d
∗ = dθ + dϕ is the dimension of the

parameters, and N is the number of layers in the encoder and decoder.
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Illustration of Our Convergence Rate

♦ Generalized Soft-Clipping (Lipschitz, smooth, and bounded between
s1 and s2):

f(x) =
1

s
log

(
1 + es(x−s1)

1 + es(x−s2)

)
+ s1 .
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Figure: Squared norm of gradients and Negative ELBO on CelebA for VAE
trained with Adam.
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IWAE: Convergence Results

Objective: Obtain a tighter ELBO by using multiple importance
weighted samples:

log pθ(x) ≥ Eq⊗K
ϕ (·|x)

[
log

1

K

K∑
ℓ=1

pθ(x, z
(ℓ))

qϕ(z(ℓ)|x)

]
︸ ︷︷ ︸

IWAE

≥ Eqϕ(·|x)

[
log

pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

VAE

.

Convergence Analysis (Informal)

Under similar assumptions to those for VAE, we have:

E
[∥∥∥∇θ,ϕLIWAE

K (θR, ϕR)
∥∥∥2] = O

(
L∗
K√
n
+ d∗

log n

BK
√
n

)
,

where B is the batch size and K is the number of variational samples.
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Illustration of Our Convergence Rate in IWAE
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Figure: Negative ELBO in IWAE on CelebA and CIFAR-100 trained with Adam.

Link with Signal-to-Noise Ratio (SNR) [Rainforth et al. 2018].
SNR: expected gradient magnitude scaled by its standard deviation.

SNR(θ) =
√
BK SNR(ϕ) =

√
B/K

⇒ Gradually increase K until a fixed threshold is reached.

⇒ Use Rényi IWAE [Daudel et al. 2023] with SNR(θ, ϕ) =
√
BK.
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Extension to Variational Inference

• Variational Inference is typically formulated as:

ϕ∗ ∈ argmin
ϕ∈Φ

KL(qϕ ∥ p(·|x))

⇐⇒ ϕ∗ ∈ argmax
ϕ∈Φ

Eqϕ(·|x)

[
log p(x,z)

qϕ(z|x)

]

where qϕ(z|x) is the variational distribution.

Structural Assumptions in Prior Convergence Results.

Reference Non-Concavity Beyond Location-Scale Parameterization
of log p Family for qϕ Type

Kim et al. 2024 ✗ ✗ Linear
Domke et al. 2023 ✓ ✗ Linear
Kim et al. 2023 ✓ ✗ Non-linear (scale)
Ours ✓ ✓ Non-linear

Location-Scale Family: Distributions obtained by shifting and scaling a fixed base

distribution, i.e., Y = µ+ σW with location µ and scale σ > 0.
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Take Home Messages

☞ A convergence rate of O(n−1/2 log n) for VAE with SGD and Adam,
illustrated using the Deep Gaussian VAE.

☞ Increasing K in IWAE without tuning other parameters leads to
vanishing SNR and poor gradient estimates for ϕ, hindering the
learning of θ.

☞ New convergence results for Variational Inference, beyond
location-scale families and linear parameterizations.
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Thank you for your attention!

Find the full paper here (Accepted at AISTATS 2025)
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