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Introduction: Optimization in Deep Learning

Consider the unconstrained Optimization Problem:

θ∗ ∈ arg min
θ∈Rd

V (θ).

Gradient Descent (GD):

θn+1 = θn − γn+1∇V (θn).

Stochastic Gradient Descent (SGD):

θn+1 = θn − γn+1∇̂V (θn),

where γn+1 is the step size and ∇̂V (θn) is an estimator of ∇V (θn).

In Deep Learning:
Objective Function: V (θ) = E[L(Fθ(x), y)].
⇒ Fθ: Neural Network with parameters θ ∈ Rd and L: Loss Function.

SGD Update:

θn+1 = θn − γn+1∇L(Fθn(xn+1), yn+1).
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Motivating Examples

Theoretical analysis of Vanilla SGD relies on unbiased estimator.

In some applications, only biased gradient estimators are accessible.

Reinforcement Learning: Policy Gradient and Actor-Critic.
Monte Carlo: Importance Sampling and Sequential Monte Carlo.
Generative Models (biased objectives): VAE, IWAE, and BR-IWAE.
Zeroth-Order Gradient: Adversarial Networks.
Bilevel Optimization: Min-Max and Compositional Problems.

We present a general framework for analyzing SGD with biased
gradient estimators and adaptive steps based on biased control.
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Adaptive Stochastic Approximation

Adaptive Stochastic Approximation:

θn+1 = θn − γn+1AnHθn (Xn+1), n ∈ N.

An: Sequence of symmetric and positive definite matrices.

Hθn (Xn+1) = ∇V (θn) +

bias︷ ︸︸ ︷
b(θn)︸ ︷︷ ︸

h(θn)

+ en+1︸︷︷︸
noise

.

Special cases: If An = Id ⇒ Stochastic Approximation.
b(θn) = 0 and en+1 = 0 ⇒ Gradient Descent.
b(θn) = 0 and en+1 : zero-mean noise ⇒ SGD with unbiased gradient
estimator.
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Examples

Adagrad:
Square root of the inverse of the covariance of the gradient.

An =

[
δId +Diag

(
1

n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)
T

)]−1/2

.

RMSProp:
An exponential moving average of the past squared gradients.

An =

[
δId + (1− β)Diag

(
n∑

k=0

βn−kHθk (Xk+1)Hθk (Xk+1)
⊤

)]−1/2

,

where β is the moving average parameter.

Stochastic Newton:
An = Recursive estimate of the inverse Hessian.
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Convergence Results

Convergence Analysis (Informal)

For any n ≥ 1, let γn = Cγn
−1/2 and R ∈ {0, . . . , n} be some discrete

random variable. Under mild assumptions, we have:

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where bn corresponds to the bias term.

The term log n/
√
n arises from classical adaptive step-size methods.

The term bn represents the additive bias term, which can be constant
or time-dependent.
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Application to Adagrad, RMSProp, and Adam

Convergence Analysis

Assume the smoothness of V and for any n ≥ 1, let R ∈ {0, . . . , n} be a
uniformly distributed random variable.

There exists M ≥ 0 such that for all n ∈ N, ∥Hθn (Xn+1) ∥ ≤ M.

Suppose that for any n ≥ 1, there exist positive constants α and Cα such
that:

∥E [Hθn (Xn+1) |Fn]−∇V (θn)∥ ≤ Cαn
−α .

Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
.

The bias term bn is given by:

bn =


O
(
n−2α

)
if α < 1/4 ,

O
(
n−1/2

)
if α > 1/4 ,

O
(
n−1/2 log n

)
if α = 1/4 .
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Generative Model: VAE

VAE: A generative model aims to model the distribution of data.

Objective: Maximize the evidence lower bound (ELBO):

log pθ(x) = logEqϕ(·|x)

[
pθ(x , z)

qϕ(z |x)

]
≥ Eqϕ(·|x)

[
log

pθ(x , z)

qϕ(z |x)

]
= LELBO(θ, ϕ; x) .
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Impact of Bias: VAE, IWAE, and BR-IWAE

IWAE: A variant of the VAE that achieves a tighter ELBO:

⇒ Bias of gradient estimator = O (1/k).
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Figure: Negative Log-Likelihood for Different Generative Models on CIFAR-10.
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Illustration of our convergence rate in IWAE
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Figure: Value of ∥∇V (θn)∥2 in IWAE with Adagrad (on the left), RMSProp, and
Adam (on the right).

The Expected Convergence Rate:

E
[
∥∇V (θR)∥2

]
=

{
O
(
n−1/4

)
if α = 1/8 ,

O
(
n−1/2 log n

)
if α = 1/4 and α = 1/2 .
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The Impact of Bias over Time
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Figure: Negative Log-Likelihood on the CIFAR-10 dataset for different values of α
over time (in seconds).
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Take home messages

Convergence rate of Adaptive Stochastic Approximation
(Adagrad, RMSProp, and Adam):

E
[
∥∇V (θR)∥2

]
=


O
(
n−1/2 log n + n−2α

)
if α < 1/4 ,

O
(
n−1/2 log n + n−1/2

)
if α > 1/4 ,

O
(
n−1/2 log n + n−1/2 log n

)
if α = 1/4 .

Crucial choice of an appropriate value α to achieve fast convergence
without being too computationally expensive.
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Thank you for your attention!
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