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Introduction: Optimization in Deep Learning

Consider the unconstrained Optimization Problem:
0" € arg min V(0).
geeRd ( )
Gradient Descent (GD):

‘9n+1 = (9,, - ’YnJrlv V(en)
Stochastic Gradient Descent (SGD):

9n+1 = (9,, - 7n+1€\\/(9n)7

where p41 is the step size and ﬁ/(Gn) is an estimator of VV/(6,).
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‘9n+1 = (9,, - ’YnJrlv V(en)
Stochastic Gradient Descent (SGD):

Ony1 =0, — 7n+1€\\/(9n)7

where p41 is the step size and ﬁ/(Gn) is an estimator of VV/(6,).

In Deep Learning:
@ Objective Function: V(0) = E[L(Fy(x),y)].
= Fy: Neural Network with parameters §# € R and £: Loss Function.
e SGD Update:

Ont1 = 0n — Y1 VL(Fo,(Xn4+1), Ynt1)-
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Motivating Examples

@ Theoretical analysis of Vanilla SGD relies on unbiased estimator.
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Motivating Examples

@ Theoretical analysis of Vanilla SGD relies on unbiased estimator.
@ In some applications, only biased gradient estimators are accessible.

Reinforcement Learning: Policy Gradient and Actor-Critic.

Monte Carlo: Importance Sampling and Sequential Monte Carlo.
Generative Models (biased objectives): VAE, IWAE, and BR-IWAE.
Zeroth-Order Gradient: Adversarial Networks.

Bilevel Optimization: Min-Max and Compositional Problems.
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Motivating Examples

@ Theoretical analysis of Vanilla SGD relies on unbiased estimator.
@ In some applications, only biased gradient estimators are accessible.

o Reinforcement Learning: Policy Gradient and Actor-Critic.

e Monte Carlo: Importance Sampling and Sequential Monte Carlo.

o Generative Models (biased objectives): VAE, IWAE, and BR-IWAE.
o Zeroth-Order Gradient: Adversarial Networks.

o Bilevel Optimization: Min-Max and Compositional Problems.

@ We present a general framework for analyzing SGD with biased
gradient estimators and adaptive steps based on biased control.
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Adaptive Stochastic Approximation

o Adaptive Stochastic Approximation:

Ont1=0n — Yn+1An , neN.

e A,: Sequence of symmetric and positive definite matrices.
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Adaptive Stochastic Approximation

o Adaptive Stochastic Approximation:

Ont1=0n — Yn+1An , neN.

e A,: Sequence of symmetric and positive definite matrices.

bias
~ =
. = VV(0,) + b(0,) + ens1.-
—_—
h(9,,) noise

@ Special cases: If A, = I; = Stochastic Approximation.

e b(f,) =0 and e, 1 = 0 = Gradient Descent.
e b(0,) =0 and e,.1 : zero-mean noise = SGD with unbiased gradient
estimator.
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o Adagrad:
e Square root of the inverse of the covariance of the gradient.

1 n —-1/2

k=0

A, =

e RMSProp:

e An exponential moving average of the past squared gradients.

" -1/2
514+ (1 - B)Diag <Z gk )] :

k=0

A, =

where (8 is the moving average parameter.
o Stochastic Newton:
e A, = Recursive estimate of the inverse Hessian.
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Convergence Results

For any n > 1, let v, = Cynfl/2 and R € {0,...,n} be some discrete
random variable. Under mild assumptions, we have:

E 19V 6)IE] =0 (5 +5,) |

where b,, corresponds to the bias term.

Convergence Analysis (Informal)
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Convergence Results

Convergence Analysis (Informal)

For any n > 1, let v, = Cynfl/2 and R € {0,...,n} be some discrete
random variable. Under mild assumptions, we have:

E 19V 6)IE] =0 (5 +5,) |

where b,, corresponds to the bias term.

@ The term log n/\/n arises from classical adaptive step-size methods.

@ The term b, represents the additive bias term, which can be constant
or time-dependent.
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Application to Adagrad, RMSProp, and Adam

@ Assume the smoothness of V and for any n>1, let R € {0,...,n} be a
uniformly distributed random variable.

@ Suppose that for any n > 1, there exist positive constants « and C, such
that:
IE [Ho, (Xn+1) [Fn] = VV (0n)|| < Can™ .

Then,

E[I9V (0a)IP] = 0 ('} . bn) |
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Application to Adagrad, RMSProp, and Adam

@ Assume the smoothness of V and for any n>1, let R € {0,...,n} be a
uniformly distributed random variable.

@ Suppose that for any n > 1, there exist positive constants « and C, such
that:
IE [Ho, (Xn+1) [Fn] = VV (0n)|| < Can™ .

Then,

E[I9V (0a)IP] = 0 ('} . bn) |

The bias term b, is given by:
O (n™2*) if o <1/4,
b, = (’)(n’l/z) ifa>1/4,
(’)(n’l/2 logn) ifa=1/4,
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Generative Model: VAE

o VAE: A generative model aims to model the distribution of data.

@ Objective: Maximize the evidence lower bound (ELBO):

Input «-------------o-oooememee
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Impact of Bias: VAE, IWAE, and BR-IWAE

o IWAE: A variant of the VAE that achieves a tighter ELBO:
= Bias of gradient estimator = O (1/«).
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Figure: Negative Log-Likelihood for Different Generative Models on CIFAR-10.
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lllustration of our convergence rate in IWAE

— a=1/8 (RMSProp)
—— a=1/4 (RMSProp)
=172 (RMSProp)
— a=1/8(Adam)
— a=1/4(Adam)
a =172 (Adam)
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Figure: Value of |[VV/(6,)||? in IWAE with Adagrad (on the left), RMSProp, and
Adam (on the right).

o The Expected Convergence Rate:

O (n~ /%) ifa=1/8,

2| _
E[”VV(GR)H]—{O(,.,1/2|ogn) fa=1/4 and a=1/2.

Sobihan Surendran Adaptive Stochastic Approximation 11/14



of Bias over Time
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Figure: Negative Log-Likelihood on the CIFAR-10 dataset for different values of «
over time (in seconds).
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Take home messages

@ Convergence rate of Adaptive Stochastic Approximation
(Adagrad, RMSProp, and Adam):

O ( + n2%) if o <1/4,
E [HVV(eR)Hﬂ — {0 (nV2logn+ 1 ) ifo>1/4,
(’)(n’l/zlogn—l—n’lplogn) ifa=1/4.

@ Crucial choice of an appropriate value « to achieve fast convergence
without being too computationally expensive.
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Thank you for your attention!
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