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> Provide a non-asymptotic analysis of Stochastic Gradient Descent with

biased gradients and adaptive steps for non-convex smooth functions.

5 Account for a constant and decreasing bias over iterations.
> Application to Adagrad, RMSProp, and Adam.

Introduction

Consider the unconstrained Optimization Problem:

0" € in 1V (0).
arg min V()

In Machine Learning: Objective Function: V(0) = E[L(Fy(x),y)].
— F»: Neural Network with parameters # € R? and £: Loss Function.

Stochastic Gradient Descent (SGD):
9n+1 — Hn — %H—lﬁ/(@n)a
where 7,11 is the step size and ﬁ/(ﬁn) is an estimator of VV'(6,,).

= Theoretical analysis of Vanilla SGD relies on unbiased estimator.

Applications of Biased Gradients

e Reinforcement Learning: Policy Gradient and Actor-Critic.
e \Vlonte Carlo: Importance Sampling and Sequential Monte Carlo.
e Generative Models (biased objectives): VAE and IWAE.

e Bilevel Optimization: Min-Max and Compositional Problems.

¢ Previous works on SGD with biased gradients ([1, 2, 3]):
5| VV(6,)]]7] = O (nl/Q log n + bias) .

e Adaptive Stochastic Approximation:
Hn—H — (971 — anJrlAnHQn (Xn+1>7 n € N.

» A,: Sequence of symmetric and positive definite matrices.

bias
AN
- HHn (Xn+1) — \vv(ezge—;_ b(9n>,+\€nf1, :

e Special cases: If A, = I; = Stochastic Approximation.
*0(0,) =0 and ¢,,.; = 0 = Gradient Descent.

*b(0,,) =0 and e,,.1 : zero-mean noise = SGD with unbiased estimator.
_|_

¢ RMSProp and Adam:

. 1 -1/2
Ap = |01g+ (1 — B)Diag (Z 5nkHek<Xk+1)H9k(Xk+1)T) -
k=0 _
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Assumptions on Biased Gradients

e Minimal Assumption: (extension of [1, 2|) There exist two non-increasing
positive sequences (A,),~; and (7,,),~, such that for all n € N,

[ (VV (0,), At (X)) ] = Xt (EIVVO)IP] = r0s1) -

e Mild Assumption in the Case of Bounded Gradients: There exist C,, > 0
and « > 0 such that for any n € N,

Z;n = ||E [HHn (Xns1) [ Fol = VV(0,)] < Can™ .

Convergence Analysis

Theorem: Foranyn > 1, let v, = 771_1/2, r, = C.n~" where C, > 0,
C, >0andr > 0. Let R € {0,...,n} be a uniformly distributed random
variable. Under mild assumptions, we have:

O(nl/Qﬁ_ogn— if r <1/2,

D {|VV (HR)HQ} =q 0 (n_l/2 log n - if r >1/2,
O (n_l/2 logn +n~?log n) if r=1/2.

Polyak-tojasiewicz (PL): For any n > 1, let v, = Cyn™" with C, > 0.
Under Polyak-t.ojasiewicz condition, we have:

B[V (6,) —V(0)]=0 (n"+1,).

e l.i.d case. For ani.i.d. sequence {X,}, if E[Hy (X,.1) | Fu] = VV(6,), the
estimator is unbiased. Otherwise, the bias is

e Markov Chain case. For an ergodic Markov Chain with stationary
distribution 7, the bias with 7" samples per step is given by:

b, = ||h(6,) — YV (0,)|| + M~/ Tmix/T,
where h(0) = [ Hyp(x)m(dz) and T is the mixing time.

Application: Stochastic Bilevel Optimization

e Objective Function:
min V(0) = E¢ [f(6,¢7(0);§)]  (upper-level)

HcRd

subject to ¢*(0) € argminE; [¢(0, ¢;C)]  (lower-level)
peRY

where f and g are both continuously differentiable, and & and ( are random
variables.

e The gradient of V' [4]:
VV(6) = Vaof (6,6°(0))=Visg (6,6°(0)) [Vig (6,07(0))] ' Vof (6,¢°(6)).

Two types of biases: inability to compute ¢*(0) = |[dp1 — " (0;)]]".
estimation of [V3g(0, ¢)]™! = ||E[H|F] — VV (03],
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Experiments: Importance Weighted Autoencoder

Objective: : Maximize the evidence lower bound (ELBO):

~

log py(x) > “Aq?k(.‘x) 10%%

> K, (1) |log

Bias Control for IWAE

Theorem: Assume that for all § € O, ||Vglogpy(z, 2)|| < M for some
M > 0. Then, there exists C' > 0 such that for all # € © and ¢ € D,

: S, C
‘ «quk(,m [V@,C'IQNAE(H, ¢; ZIZ') — Vy 1ng9($)] | < E .
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Figure: ||[VV(6,)||* with Adagrad (on the left), RMSProp, and Adam (on the right).

The Expected Convergence Rate:

:[iov o] = {00 ) a1,
- o Plogn) ifa=1/4 and a=1/2.

Conclusion

1" A convergence rate of C’)(n‘l/2 logn + b,) for Adaptive Biased SA applied to

Adagrad, RMSProp, and Adam, under non-convex smooth settings.

1= [mproved linear convergence rate with Polyak-tojasiewicz condition.
1 Application to Stochastic Bilevel Optimization and illustration of our con-

vergence rate with IWAE.

1= Crucial choice of an appropriate value o to achieve fast convergence without

being too computationally expensive.
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