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Goal

☞ Provide a non-asymptotic analysis of Stochastic Gradient Descent with
biased gradients and adaptive steps for non-convex smooth functions.

☞ Account for a constant and decreasing bias over iterations.
☞ Application to Adagrad, RMSProp, and Adam.

Introduction

Consider the unconstrained Optimization Problem:
θ∗ ∈ arg min

θ∈Rd
V (θ).

In Machine Learning: Objective Function: V (θ) = E[L(Fθ(x), y)].
⇒ Fθ: Neural Network with parameters θ ∈ Rd and L: Loss Function.
Stochastic Gradient Descent (SGD):

θn+1 = θn − γn+1∇̂V (θn),
where γn+1 is the step size and ∇̂V (θn) is an estimator of ∇V (θn).

⇒ Theoretical analysis of Vanilla SGD relies on unbiased estimator.

Applications of Biased Gradients

• Reinforcement Learning: Policy Gradient and Actor-Critic.
• Monte Carlo: Importance Sampling and Sequential Monte Carlo.
• Generative Models (biased objectives): VAE and IWAE.
• Bilevel Optimization: Min-Max and Compositional Problems.

♦Previous works on SGD with biased gradients ([1, 2, 3]):

E
[
∥∇V (θn)∥2] = O

(
n−1/2 log n + bias

)
.

Adaptive Stochastic Approximation

• Adaptive Stochastic Approximation:
θn+1 = θn − γn+1AnHθn

(Xn+1), n ∈ N.

▶An: Sequence of symmetric and positive definite matrices.

▶Hθn
(Xn+1) = ∇V (θn) +

bias︷︸︸︷
b(θn)︸ ︷︷ ︸

h(θn)

+ en+1︸︷︷︸
noise

.

• Special cases: If An = Id ⇒ Stochastic Approximation.
∗ b(θn) = 0 and en+1 = 0 ⇒ Gradient Descent.
∗ b(θn) = 0 and en+1 : zero-mean noise ⇒ SGD with unbiased estimator.

• RMSProp and Adam:

An =

[
δId + (1 − β)Diag

(
n∑

k=0

βn−kHθk
(Xk+1)Hθk

(Xk+1)⊤

)]−1/2

.

Assumptions on Biased Gradients

• Minimal Assumption: (extension of [1, 2]) There exist two non-increasing
positive sequences (λn)n≥1 and (rn)n≥1 such that for all n ∈ N,

E
[

⟨∇V (θn) , AnHθn
(Xn+1)⟩

]
≥ λn+1

(
E
[
∥∇V (θn)∥2]− rn+1

)
.

• Mild Assumption in the Case of Bounded Gradients: There exist Cα > 0
and α > 0 such that for any n ∈ N,

b̃n := ∥E [Hθn
(Xn+1) |Fn] − ∇V (θn)∥ ≤ Cαn−α .

Convergence Analysis

Theorem: For any n ≥ 1, let γn = Cγn−1/2, rn = Crn
−r where Cγ > 0,

Cr > 0 and r > 0. Let R ∈ {0, . . . , n} be a uniformly distributed random
variable. Under mild assumptions, we have:

E
[
∥∇V (θR)∥2

]
=


O
(
n−1/2 log n + n−r

)
if r < 1/2 ,

O
(
n−1/2 log n + n−1/2) if r > 1/2 ,

O
(
n−1/2 log n + n−1/2 log n

)
if r = 1/2 .

Polyak-Łojasiewicz (PL): For any n ≥ 1, let γn = Cγn−γ with Cγ > 0.
Under Polyak-Łojasiewicz condition, we have:

E [V (θn) − V (θ∗)]= O
(
n−γ + rn

)
.

• I.i.d case. For an i.i.d. sequence {Xn}, if E[Hθn
(Xn+1) | Fn] = ∇V (θn), the

estimator is unbiased. Otherwise, the bias is
b̃n = ∥h(θn) − ∇V (θn)∥.

• Markov Chain case. For an ergodic Markov Chain with stationary
distribution π, the bias with T samples per step is given by:

b̃n = ∥h(θn) − ∇V (θn)∥ + M
√

τmix/T ,

where h(θ) =
∫

Hθ(x)π(dx) and τmix is the mixing time.

Application: Stochastic Bilevel Optimization

• Objective Function:
min
θ∈Rd

V (θ) = Eξ [f (θ, ϕ∗(θ); ξ)] (upper-level)

subject to ϕ∗(θ) ∈ argmin
ϕ∈Rq

Eζ [g(θ, ϕ; ζ)] (lower-level)

where f and g are both continuously differentiable, and ξ and ζ are random
variables.

• The gradient of V [4]:
∇V (θ) = ∇θf (θ, ϕ∗(θ))−∇2

θϕg (θ, ϕ∗(θ))
[
∇2

ϕg (θ, ϕ∗(θ))
]−1∇ϕf (θ, ϕ∗(θ)) .

Two types of biases: inability to compute ϕ∗(θ) ⇒ ∥ϕk+1 − ϕ∗ (θk)∥2.
estimation of [∇2

ϕg(θ, ϕ)]−1 ⇒ ∥E [Hk|Fk] − ∇V (θk)∥2.

Experiments: Importance Weighted Autoencoder

Objective: : Maximize the evidence lower bound (ELBO):

log pθ(x) ≥ Eq⊗k
ϕ (·|x)

log 1
k

k∑
ℓ=1

pθ(x, z(ℓ))
qϕ(z(ℓ) | x)


︸ ︷︷ ︸

IWAE

≥ Eqϕ(·|x)

[
log pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

VAE

.

Bias Control for IWAE

Theorem: Assume that for all θ ∈ Θ, ∥∇θ log pθ(x, z)∥ ≤ M for some
M > 0. Then, there exists C > 0 such that for all θ ∈ Θ and ϕ ∈ Φ,∥∥∥Eq⊗k

ϕ (·|x)

[
∇̂θLIWAE

k (θ, ϕ; x) − ∇θ log pθ(x)
]∥∥∥ ≤ C

k
.
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Figure: ∥∇V (θn)∥2 with Adagrad (on the left), RMSProp, and Adam (on the right).

The Expected Convergence Rate:

E
[
∥∇V (θR)∥2

]
=

{
O
(
n−1/4) if α = 1/8 ,

O
(
n−1/2 log n

)
if α = 1/4 and α = 1/2 .

Conclusion

☞ A convergence rate of O(n−1/2 log n + bn) for Adaptive Biased SA applied to
Adagrad, RMSProp, and Adam, under non-convex smooth settings.

☞ Improved linear convergence rate with Polyak-Łojasiewicz condition.
☞ Application to Stochastic Bilevel Optimization and illustration of our con-

vergence rate with IWAE.
☞ Crucial choice of an appropriate value α to achieve fast convergence without

being too computationally expensive.
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