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Goal

☞ Provide a non-asymptotic analysis of Variational Autoencoders and Importance
Weighted Autoencoders with Stochastic Gradient Descent.
☞ Establish theoretical guarantees and illustrate the results using Deep Gaussian VAE.
☞ Extend the analysis to Black Box Variational Inference.

Introduction

We consider generative models of the form pθ(x, z) = pθ(z) pθ(x|z), where x is an obser-
vation and z a latent variable. The marginal log-likelihood is given by:

log pθ(x) = logEpθ(·|x)

[
pθ(x, z)
pθ(z|x)

]
≥ Eqϕ(·|x)

[
log pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

Evidence Lower Bound

=: L(θ, ϕ; x) ,

where qϕ(z|x) is the variational distribution.
The Pathwise Gradient.
▶Reparameterization trick [1]: z = g(ε, ϕ), where ε ∼ pε (known distribution).
▶Pathwise gradient of the ELBO:

∇ϕL(θ, ϕ; x) = Epε
[∇z log wθ,ϕ(x, z) · ∇ϕg(ε, ϕ)] − Epε

[∇ϕ log qϕ(g(ε, ϕ) | x)] ,

where wθ,ϕ(x, z) = pθ(x, z)/qϕ(z|x) the unnormalized importance weights.
Consider the Stochastic Gradient Descent (SGD) update:

(θk+1, ϕk+1) = (θk, ϕk) + γk+1∇̂θ,ϕL(θk, ϕk; Dk+1) , (1)
where ∇̂θ,ϕL(θk, ϕk; Dk+1) denotes an estimator of the gradient, Dk+1 is the mini-batch of
data used at iteration k + 1 and for all k ≥ 1, γk > 0 is the learning rate.

Smoothness of L + Gradient variance bound ⇒ E
[
∥∇L (θn, ϕn)∥2

]
= O(n−1/2 log n).

Deep Gaussian VAE

Figure: Illustration of the Architecture of a VAE using multivariate Gaussian distributions.

Convergence Analysis for Deep Gaussian VAE

Consider a neural network with the assumptions:
(i) ∥Gθ(z)∥ ≤ CG, ∥µϕ(x)∥ ≤ Cµ, λmin(Σϕ(x)) ≥ cΣ, and all activation functions are

Lipschitz continuous and smooth.
(ii) There exists a constant a such that ∥θ∥∞ + ∥ϕ∥∞ ≤ a for all θ ∈ Θ and ϕ ∈ Φ.

Let (θn, ϕn) ∈ Θ × Φ be the n-th iterate of Adam, with γn = Cγn−1/2, Cγ > 0, and
β1 <

√
β2 < 1. For all n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random

variable. Then,

E
[
∥∇θ,ϕL (θR, ϕR)∥2

]
= O

(
L∗
√

n
+ Na2(N−1) d∗ log n

(1 − β1)
√

n

)
,

where L∗ = L (θ∗, ϕ∗)−L (θ0, ϕ0), d∗ = dθ+dϕ is the total dimension of the parameters,
and N is the total number of layers in the encoder and decoder.

♦Generalized Soft-Clipping (Lipschitz, smooth, and bounded between s1 and s2):

f (x) = 1
s

log

(
1 + es(x−s1)

1 + es(x−s2)

)
+ s1 .
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Figure: Squared norm of gradients and Negative ELBO on CelebA for VAE trained with Adam.

Importance Weighted Autoencoder

Objective: Obtain a tighter ELBO by using multiple importance-weighted samples:

log pθ(x) ≥ Eq⊗K
ϕ (·|x)

log 1
K

K∑
ℓ=1

pθ(x, z(ℓ))
qϕ(z(ℓ)|x)


︸ ︷︷ ︸

IWAE

≥ Eqϕ(·|x)

[
log pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

VAE

.

Convergence Analysis for IWAE

Assuming the same conditions as for VAE and mild regularity on weights wθ,ϕ, we have:

E
[∥∥∇θ,ϕLIWAE

K (θR, ϕR)
∥∥2] = O

(
L∗
√

n
+ d∗ log n

BK
√

n

)
,

where B is the batch size and K is the number of variational samples.

Link with Signal-to-Noise Ratio (SNR) [2].
SNR: expected gradient magnitude scaled by its standard deviation.

SNR(θ) =
√

BK SNR(ϕ) =
√

B/K
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Figure: Negative ELBO in IWAE on CelebA (on the left) and CIFAR-100 (on the right) trained with Adam.

⇒ gradually increase K until a threshold, or use Rényi IWAE with SNR(θ, ϕ) =
√

BK.

Extension to Black Box Variational Inference

Black Box Variational Inference (BBVI) is typically formulated as:

ϕ∗ ∈ argmin
ϕ∈Φ

KL(qϕ ∥ p(·|x)) ⇐⇒ ϕ∗ ∈ argmax
ϕ∈Φ

Eqϕ(·|x)

[
log p(x, z)

qϕ(z|x)

]
,

where qϕ(z|x) is the variational distribution.
Structural Assumptions in Prior Convergence Results.
Reference Non-Concavity Beyond Location-Scale Parameterization

of log p Family for qϕ Type

Kim et al. [3] ✗ ✗ Linear
Domke et al. [4] ✓ ✗ Linear
Kim et al. [5] ✓ ✗ Non-linear (scale)
Ours ✓ ✓ Non-linear

Conclusion

☞ A convergence rate of O(n−1/2 log n) for VAE with SGD and Adam.
☞ Illustration of the results using the Deep Gaussian VAE, that supports our theoretical

claims, with similar empirical results for standard VAE with ReLU.
☞ Increasing K in IWAE without tuning other parameters leads to vanishing SNR and poor

gradient estimates for ϕ, hindering the learning of θ.
☞ New convergence results for BBVI, beyond location-scale families and linear parameteri-

zations.
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