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Importance Weighted Autoencoder

1= Provide a non-asymptotic analysis of Variational Autoencoders and Importance Objective:  Obtain a tlghter ELBO by using mu|t|p|e importance-weighted samples:

Weighted Autoencoders with Stochastic Gradient Descent.

1= Establish theoretical guarantees and illustrate the results using Deep Gaussian VAE. S po(x ] i po(, Z)
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1° Extend the analysis to Black Box Variational Inference. \ L do\<|l) |
= VAE
IWAE
Introduction Convergence Analysis for IWAE

We consider generative models of the form py(x, 2) = py(2) py(x|z), where x is an obser- Assuming the same conditions as for VAE and mild regularity on weights wy ,, we have:
vation and z a latent variable. "he margmal Iog—llkellhood IS glven by: ) [ los 1
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logpy(x) = loglE, (.1, > K, (1 |log 0,0 x),
@) Pt po(z ‘5’7) 1) gz ‘33) £ ) where B is the batch size and K is the number of variational samples.

Evidence Lower Bound

where g;(z|z) is the variational distribution.

The Pathwise Gradient.
» Reparameterization trick [1|: 2 = g(e, ¢), where € ~ p. (known distribution).

» Pathwise gradient of the ELBO: SNR(f) = vBK SNR(¢) = \/B/K
VoL(0,0;2) = Ky [V:]ogwye(z,2) - Vagle, 0)] — Ky [V loggs(gle, @) | )]

Link with Signal-to-Noise Ratio (SNR) [2].
SNR: expected gradient magnitude scaled by its standard deviation.
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where wy 4(x, 2) = py(x, 2)/q,(2|x) the unnormalized importance weights. — k=3 — k=5
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Consider the Stochastic Gradient Descent (SGD) update: o o k=100
(9k+1> ¢k+1) — (Qka Qbk) + 7k+1v9,¢£(9k7 Dr:; Dk+1) ; (1) § 53
where V) ,L(0)., 01:; Di+1) denotes an estimator of the gradient, Dy is the mini-batch of

data used at iteration k£ + 1 and for all £ > 1, 7 > 0 is the learning rate. - | = , \
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Smoothness of £ + Gradient variance bound = E [HVE (01, D) |l } = O(n~ /2]og n). J Epochs Epochs

Figure: Negative ELBO in IWAE on CelebA (on the left) and CIFAR-100 (on the right) trained with Adam.

Deep Gaussian VAE = gradually increase K until a threshold, or use Rényi IWAE with SNR(6, ¢) = vV BK.

Extension to Black Box Variational Inference
®_’ 4(2 | x) [—> gz((fc)) "'"®_’Pe(x | z) —>| Go(2) '"-@
- _ - _ Black Box Variational Inference (BBVI) is typically formulated as:
E\/d z = pe(X) + Z;m(x) oF> D\/d - -
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Figure: lllustration of the Architecture of a VAE using multivariate Gaussian distributions. where q¢(z|x) - the variational distribution.

Structural Assumptions in Prior Convergence Results.

Convergence Analysis for Deep Gaussian VAE

Reference Non-Concavity Beyond Location-Scale Parameterization
Consider a neural network with the assumptions: of logp Family for g, Type
(i) |Ga(2)|| < Cq, ||pe(@)]] < Chy Amin(2s(x)) > cx, and all activation functions are Kim et al. 3] X X Linear
Lipschitz continuous and smooth. Domke et al. [4] v X Linear
(ii) There exists a constant a such that ||0|| + ||®||cc < a for all § € © and ¢ € . Kim et al. [5] v X Non-linear (scale)
Let (0,,, ¢,) € © X O be the n-th iterate of Adam, with v, = 7n‘l/Q, C, > 0, and Ours v v Non-linear
B1 < +Pa<1l Foralln>1,let R €{0,...,n} be a uniformly distributed random _
variable. Then, Conclusion

L 1y d¥logn
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V1 (1—751)+/n 1= A convergence rate of O(n~"/?logn) for VAE with SGD and Adam:.

where L* = L (0%, ") — L (0y, ¢0), d* = dg+d,; is the total dimension of the parameters, 1= ||lustration of the results using the Deep Gaussian VAE, that supports our theoretical
and /N is the total number of layers in the encoder and decoder. claims, with similar empirical results for standard VAE with RelLU.
1" |ncreasing K in IWAE without tuning other parameters leads to vanishing SNR and poor
¢ Generalized Soft-Clipping (Lipschitz, smooth, and bounded between s; and s): gradient estimates for ¢, hindering the learning of 6.
1 1 & eS(z—s1) 1= New convergence results for BBV, beyond location-scale families and linear parameteri-
flz) = glog © osl—5) S1 - zations.
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